دانشگاه آزاد اسلامی
واحد تهران جنوب
دانشکده تحصیلات تکمیلی
پایان نامه برای دریافت درجه کارشناسی ارشد
مهندسی برق – الکترونیک
عنوان:
تشخیص گفتار از موسیقی به روش شبکه عصبی مصنوعی
برای رعایت حریم خصوصی اسامی استاد راهنما،استاد مشاور و نگارنده درج نمی شود
تکه هایی از متن به عنوان نمونه :
(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)
چکیده
پردازش گفتار با توجه به کاربردهای وسیع آن در ارتباطات، تبادل اطلاعات میان انسان و ماشین مانند روبات ها، صنعت مخابرات، سمعک ها، به کارگیری ماشین در ترجمه مکالمات از یک زبان به زبان دیگر، ابزارهای آموزشی و دیگر محصولات تجاری مورد توجه قرار گرفته است. دهه اخیر شاهد پیشرفت چشمگیری در این عرصه بوده است. سیستم ها و الگوریتم هایی که با عملکرد بالا در آزمایشگاه پیاده سازی شده اند، به سمت دنیای واقعی در حال حرکت هستند.
تمایز بین گفتار و موسیقی (SMD) از جمله موضوعاتی است که در دهه اخیر، مطالعات زیادی روی آن انجام شده است. از کاربردهای آن می توان به تشخیص کانال های رادیویی که فقط موسیقی پخش می کنند اشاره کرد. همچنین می تواند به عنوان بخش اولیه در بازشناسی خودکار گفتار محسوب شود.
به طور کلی اغلب کارهایی که در این زمینه انجام شده است شامل دو مرحله می باشد: 1- استخراج ویژگی قطعه صوتی که تمایز بین گفتار و موسیقی را بیان می کند 2- طبقه بندی قطعه صوتی با توجه به ویژگی. در بعضی رویکردها از یک ویژگی استفاده می شود ولی در برخی دیگر از چند ویژگی. از جمله این ویژگی ها می توان به ویژگی های حوزه زمان، حوزه فرکانس و زمان – فرکانس و… اشاره کرد. طبقه بندی کننده هایی که برای این کار استفاده می شوند نیز طبقه کننده های مرسوم مانند مدل مارکوف پنهان، ماشین بردار پشتیبان، گوسی و شبکه های عصبی و… می باشند. در این تحقیق از ضرائب ویولت به عنوان ابزار پایه استفاده شده است که شش ویژگی آماری ساده از آن استخراج می شوند. از شبکه عصبی پرسپترون چند لایه نیز به عنوان طبقه بندی کننده استفاده شده است که نتایج حاصله سیستم پیشنهادی در حدود 99 درصد را به دست آورد.
مقدمه
پیشرفت های قابل توجه فن آوری در طی دهه های گذشته به طور چشمگیری طریقه ارتباط برقرار کردن مردم با بسیاری از منابع مختلف اطلاعات و سرگرمی را تغییر داده است. کاربران فن آوری های مدرن، در ارتباط با انواع رسانه ها از یک حالت انفعال به وضعیت فعال منتقل شده است. همین طور که مقادیر داده ای در دسترس افزایش می یابد، تکنیک های کارآمد داده گردانی نیز لازم می شود.
در چند سال گذشته داده های صوتی به میزان زیاد از منابع در دسترس مانند پایگاه داده ها، برنامه های پخش و اینترنت ایجاد شده اند. بخاطر این که، توجه ویژه ای به توسعه استراتژی ها جابجایی داده اختصاص داده شده است. لذا، افتراق گفتار / موسیقی (SMD) به عنوان یکی از اهداف مهم به شمار می رود.
برای اهداف مختلفی می توان از یک SMD کارآمد بهره مند شد. از این ابزار می توان برای انتخاب براساس محتوا در مجموعه برنامه های پخش استفاده کرد. نمونه ای از این نوع کاربرد، انتخاب ایستگاه های رادیویی است که در واقع فقط موسیقی پخش می کنند. همچنین SMD قسمت اساسی تشخیص خودکار گفتار (ASR) و رونویسی موسیقی اتوماتیک (AMT)، که اغلب نیاز به تجزیه و تحلیل داده های صوتی بی ساخت یا نامعلوم دارند. در مورد ASR، بخش گفتار فقط باید در نظر گرفته شود، در حالی که در AMT باید نمونه های موسیقی مورد توجه قرار گیرند. لذا مهم است که سیگنال قبل از ورود به این سیستم ها به طور صحیح قطعه بندی شود. در نهایت نیز، توجه داشته باشید که دستگاه های مدرن کمک شنوایی اغلب شامل الگوریتم هایی هستند که عملکرد دستگاه را با توجه به نوع صدایی که به گوش می رسد تغییر می دهد. در این مورد، SMD خوب می تواند مؤثر باشد. بیشتر تکنیک های SMD پیشنهاد شده تاکنون، %
برای دانلود متن کامل پایان نامه اینجا کلیک کنید.
لینک بالا اشتباه است
:: بازدید از این مطلب : 433
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0