نوشته شده توسط : admin

عنوان :تشخیص خودکار نوع مدولاسیون دیجیتال در سیستم¬های

OFDM

 

برای رعایت حریم خصوصی نام نگارنده درج نمی شود

پایان‌نامه برای دریافت درجه کارشناسی ارشد

در رشته مهندسی برق گرایش مخابرات

 

تشخیص خودکار نوع مدولاسیون دیجیتال در سیستم­های OFDM

 

استاد راهنما:

دکتر عطاالله ابراهیم زاده شرمه

 

اساتید مشاور:

دکتر محمدرضا ذهابی

دکتر بیژن عباسی آرند

 

 

 

 

1393  

 

 

تکه هایی از متن به عنوان نمونه :

چکیده

تشخیص مدولاسیون را می­توان یکی از بخش­های اصلی گیرنده­های نوین مخابراتی دانست. شناساگر خودکار نوع سیگنال، عمل تعیین نوع مدولاسیون سیگنال دریافتی را در بین مجموعه­ای از مدولاسیون­ها به صورت خودکار انجام می­دهد. اکثر سیستم­های شناساگر خودکار نوع مدولاسیون در تشخیص تعداد بالای مدولاسیون عمل­کرد نامناسبی داشته و نیز در شرایط سیگنال به نویز پایین، بازدهی کمی دارند. این نوع سیستم­ها جهت تشخیص، نیاز به تعداد بالایی از ویژگی­های کلیدی دارند. به­دلیل کاربرد روزافزون سیگنال دیجیتال در مخابرات و تلاش جهت انتقال اطلاعات با نرخ بالا در سیستم­های مبتنی بر OFDM، در این پژوهش، تلاش شده است تا با انتخاب ویژگی­های بسیار کارا و استفاده از طبقه­بندی کننده­ی موثر، شناساگر مناسبی ارائه داده شود. در شناساگر پیشنهادی در بخش استخراج ویژگی، از ویژگی­های آمارگان مرتبه­ی بالا (ممان­ها وکومولان­ها تا مرتبه­ی هشتم) براساس طبقه­بندی کننده­ی ماشین بردار پشتیبان استفاده شده است. لازم به ذکر است در این پایان­نامه به صورت محدود از OFDM بهره برده و تاثیر سیستم OFDM بر ویژگی­های آمارگان مرتبه­ی بالا مورد بررسی قرار گرفت. در این پایان­نامه، جهت افزایش کارایی سیستم و کاهش همبستگی میان ویژگی­ها، برای اولین­بار در این حوزه، ترکیب خطی ویژگی­ها، به عنوان روشی جدید ارائه داده شده، سپس برای بهینه­سازی این ترکیب، از الگوریتم بهینه­سازی فاخته استفاده گردیده است. شناساگر پیشنهادی در سیگنال به نویز dB10- ، به درصد موفقیت %98.33 دست یافته است. مدولاسیون­هایی که در این پژوهش مورد بررسی قرار گرفته عبارتند از: 4ASK، 8ASK، 2PSK ،4PSK ،8PSK، 16QAM، 64QAM، 128QAM،256QAM و V29.

واژه‌های کلیدی: تشخیص خودکار نوع مدولاسیون، ترکیب خطی بردار ویژگی، تشخیص الگو، سیستم OFDM، کانال محوشونده، ماشین بردار پشتیبان.

 

 

 

 

 

 

 

 

صفحه فهرست مطالب عنوان
1 پیشگفتار
3 1- مقدمه­ای بر سیستم شناسایی خودکار نوع مدولاسیون
3 1-1- آشنایی با سیستم شناسایی خودکار نوع مدولاسیون و برخی از کاربردهای آن
3 1-1-1- سیر تحول و توسعه سیستم های مخابراتی دیجیتال
6 1-1-2- اهمیت و کاربردهای سیستم شناسایی نوع مدولاسیون
8 1-2- سیر تکامل روش های شناسایی نوع مدولاسیون
8 1-3- دسته بندی کلی روش­های خودکار شناسایی نوع مدولاسیون
10 1-4- مروری بر تحقیقات گذشته
12 1-5- جمع‌بندی و ساختار پایان‌نامه
14 نتیجه گیری
15 2- انتخاب ویژگی‌های مرتبه بالا و مطالب مورد نیاز
15 مقدمه
15 2-1- مروری بر مدولاسیون های دیجیتال
17 2-2- مفهوم استخراج ویژگی
18 2-3- ممان­ها و کومولان­های مرتبه‌ی بالا
18 2-3-1 ممان ها
28 2-3-2-کومولان­ها
37 2-4- مطالب مورد نیاز
37 2-4-1- کانال چند مسیری
39 2-4-2- سیستم OFDM
39 2-4-2-1- تاریخچه مدولاسیون OFDM
40 2-4-2-2-   مفهوم مالتی پلکسینگ
41 2-4-2-3-   معرفی مدولاسیون OFDM
43 2-4-2-4-   مدل OFDM
45 2-4-2-5- مزایا و معایب OFDM
46 2-4-3- ماشین بردارهای پشتیبان (SVM)
46 2-4- 3-1- SVM خطی و غیرخطی
51 2-4-3-2- SVM چند کلاسه
51 2-4-4-   الگوریتم بهینه‌سازی فاخته (COA)
52 2-4-4-1- زندگی و تخم‌گذاری فاخته
53 2-4-4-2- جزییات الگوریتم بهینه‌سازی الهام گرفته از فاخته
57 نتیجه‌گیری
59 3- معرفی روش پیشنهادی و نتایج شبیه­سازی­ها
59 مقدمه
59 3-1- الگوریتم فاخته در بهینه سازی عمل­کرد سیستم استخراج ویژگی
59 3-1-1- انتخاب ویژگی
62 3-1-2- روش پیشنهادی جهت بهبود عمل­کرد سیستم استخراج ویژگی
63 3-1-2- نحوه به کارگیری الگوریتم فاخته به منظور انتخاب ویژگی
64 3-2- نتایج شبیه­سازی
65 3-2-1- شناسایی نوع مدولاسیون به کمک تمام ویژگی­ها (آمارگان مرتبه­ی بالا)
66 3-2-1-1- نتایج شبیه‌سازی به کمک طبقه‌بندی کننده SVM در کانال AWGN
69 3-2-1-2- نتایج شبیه‌سازی به کمک طبقه‌بندی کننده SVM در کانال­های محوشونده
74 3-2-2- نتایج شبیه سازی به کمک سیستم استخراج ویژگی پیشنهادی
89 3-3- مقایسه عمل­کرد سیسستم پیشنهادی با کارهای انجام شده در این زمینه
90 3-4- نتیجه گیری
92 4- جمع بندی و پیشنهاد ادامه کار
92 4-1- جمع بندی
95 4-2- پیشنهادات
96 پیوست­ها
100 منابع و ماخذ
   
   
   

 


پیشگفتار

 

 

 

 

پیشگفتار

امروزه شبیه سازی سیستم­های مخابراتی با توجه به پیچیدگی روز به روز تجهیزات، از اهمیت بالایی برخوردار است. مطالعه و بررسی عمل­کرد یک سیستم با روش های تحلیلی، سخت و گاهی غیر ممکن بوده و بررسی عمل­کردهای سیستم مخابراتی مدرن، بدون استفاده از شبیه سازی، ساخت نمونه آزمایشی را اجتناب ناپذیر می­کند. اما علیرغم­ هزینه­های بالای ساخت یک نمونه آزمایشی، هزینه­های آزمایش در شرایط مختلف چندین برابر هزینه شبیه­سازی کامپیوتری خواهد بود. علاوه بر آن شبیه سازی کامپیوتری شرایطی را مورد بررسی قرار می­دهد که تولید همه­ی آن شرایط شبیه­سازی عملا با یک نمونه­ی ساخته شده، امکان پذیر نیست و ممکن است فراهم نبودن بسترهای زیرساختی، موجب ایجاد شکافی بزرگ میان مباحث تئوری و پیاده سازی عملی شود. دلایل ذکر شده و نیز سهل الوصول بودن استفاده از کامپیوتر، به طور منطقی بر محبوبیت شبیه­سازی می­افزاید.

یک بخش بسیار مهم در تمامی سیستم­های مخابراتی، بخش بازیابی اطلاعات در گیرنده است. اهمیت این بخش زمانی روشن می­گردد که بنا به هر دلیلی، گیرنده از محتوی نوع سیگنال ارسالی در فرستنده و نیز شرایط کانال اطلاع نداشته باشد. تاکنون روش­های مختلفی برای تشخیص خودکار نوع مدولاسیون دیجیتال پیشنهاد شده است که هر کدام، در شرایط گوناگون سعی در ارائه روشی خودکار برای شناسایی نوع مدولاسیون داشته­اند. روش­های ارائه شده در دو روش کلی خلاصه می­شوند: روش­های مبتنی بر نظریه­ی تصمیم (با معیارهای آماری) و روش­های مبتنی بر تشخیص الگو.

با توجه به سادگی و تعمیم­پذیری روش­های مبتنی بر تشخیص الگو در این پایان­نامه به دنبال ارائه روشی هستیم تا با آن بتوان ویژگی­های کارایی را از سیگنال استخراج و انتخاب نموده و سپس با استفاده از مفاهیم تشخیص الگو، نوع مدولاسیون را تشخیص دهیم. در بیشتر سیستم­های پیشنهاد شده­ی قبلی، همواره ویژگی­هایی از سیگنال دریافتی در گیرنده استخراج می­گردد. این ویژگی­ها در مرحله­ی بعدی به واحد دیگری به نام واحد طبقه­بندی­کننده تحویل داده می­شود. طبقه­بندی­کننده ابتدا درصدی از این ویژگی­­ها را برای تمامی کلاس­ها انتخاب نموده و براساس آنها، فرآیندی موسوم به فرآیند آموزش داده­ها را، پیاده­سازی می­کند. در حالت آموزش، شناساگر عموما، فضای بردار ویژگی را با شاخص­هایی بین کلاس­ها تقسیم می­نماید. سپس در حالت آزمایش، طبقه بندی کننده، براساس درصد باقی مانده از سیگنال­ها، ویژگی­ها را با این شاخص­های عمل­کردی می­سنجد. کارایی سیستم در این حالت، تابعی براساس درصد تشخیص صحیح سیستم است. هر چقدر ویژگی­ها از نظر مفاهیم آماری (میانگین، واریانس و غیره) در دو حالت آموزش و تست برای هر کلاس، پایدارتر بوده و نیز نسبت به دیگر کلاس­ها همبستگی کمتری داشته باشند؛ قدرت تشخیص شناساگر، بیشتر خواهد بود. متناظرا هر سیستمی که به داده­های کمتری برای آموزش و آزمایش نیاز داشته باشد قابلیت بیشتری دارد و اصطلاحا نسبت به داده­های ندیده مقاوم­تر است.

در روش­های شناسایی قبلی که مبتنی بر تشخیص الگو هستند ویژگی­هایی از سیگنال استخراج شده و بعد از آن این ویژگی­ها با شناساگری که درصد تشخیص بهتری را ارائه می­داد، مورد ارزیابی قرار می­گرفت. تقریبا در تمامی کارهای گذشته برای کاهش ابعاد ویژگی و نیز کاهش پیچیدگی سیستم، روش­هایی برای انتخاب ویژگی پیشنهاد می­گردید. در این روش­ها عموما از الگوریتم­های تکاملی برای جستجوی سراسری فضای ویژگی استفاده می­شده و زیر مجموعه­ای از بردار ویژگی که منجر به درصد تشخیص بالاتر می­شد به عنوان زیرمجموعه کارا انتخاب می­شد. در پاره­ای از روش­ها نیز از این الگوریتم­ها برای بهینه­سازی تنظیمات مربوط به طبقه بندی کننده­ها استفاده می­شد.

از میان طبقه بندی کننده­های مورد استفاده در روش­های تشخیص الگو می­توان به شبکه­های عصبی مصنوعی، طبقه بندی کننده­های فازی، مدار طبقه بندی کننده آستانه­ای و ماشین بردار پشتیبان اشاره نمود. در بین این شناساگرها، طبقه بند ماشین بردار پشتیبان، به دلیل استفاده از مفاهیم ساختار­محور در کمینه­سازی خطا، همواره با استقبال بیشتری از سوی محققان رو به رو بوده است. در این پایان­نامه نیز این شناساگر، جهت تفکیک سیگنال­های مدولاسیون دیجیتال استفاده شده است.

 

 

 

 

 

فصل اول

مقدمه­ای بر سیستم شناسایی خودکار نوع مدولاسیون

 

مقدمه

این فصل به بررسی سیستم شناسایی خودکار نوع مدولاسیون (نوع سیگنال) و برخی از کاربردهای مهم آن، سیر تکامل شناسایی نوع مدولاسیون، دسته بندی کلی روش­های شناسایی نوع مدولاسیون، کارهای انجام شده توسط دیگران، و هدف از انجام این پایان­نامه می­پردازد.

  • آشنایی با سیستم شناسایی خودکار نوع مدولاسیون و برخی از کاربردهای آن

به سیستمی که عمل تعیین نوع مدولاسیون سیگنال دریافتی را، در بین مجموعه­ای از مدولاسیون­ها به صورت خودکار و هوشمند به عهده دارد؛ شناساگر خودکار نوع سیگنال گفته می­شود. به سبب آنکه سیستم با تغییر شرایط کانال، خود را وفق می­دهد به این نوع سیستم­ها، سیستم هوشمند می­گویند. فرآیند باز­شناخت مدولاسیون، مرحله­ی قبل از دمدولاسیون است. در سیستم­های مخابراتی هوشمند، در صورت تشخیص غلط نوع و مرتبه مدولاسیون و بکارگیری یک دمدولاتور نامناسب، ممکن است محتوی اطلاعات سیگنال به­طور کامل از دست برود ]1[. تشخیص نوع مدولاسیون هم اکنون یکی از حوزه­های مهم پردازش سیگنال در علم مخابرات بوده و هر ساله تلاش­های مختلفی از سوی محققان سراسر دنیا برای ارائه سیستمی هوشمند که به طور خودکار شناسایی نوع مدولاسیون را انجام می دهد؛ صورت می­گیرد.

  • سیر تحول و توسعه­ی سیستم­های مخابراتی دیجیتال

تلگراف به عنوان اولین سیستم مخابرات الکتریکی یک سیستم مخابراتی دیجیتال بود. تلگراف الکتریکی توسط ساموئل مورس[1] اختراع و در سال 1837 به نمایش گذاشته شد. مورس، کد دودویی با طول متغیری را که در آن حروف الفبای انگلیسی با دنباله­ای از خط­های تیره [2]و نقطه­ها[3] (کلمه کد) نمایش داده می­شد؛ ابداع نمود. در این کد، حروف با تواتر وقوع بالاتر، با کلمات کد کوتاه و حروف با تواتر وقوع کمتر، با کلمات کد بلندتر نمایش داده می­شوند [2].

تقریبا چهل سال بعد از آن، در سال 1875 امیل بودت[4] یک کد دودویی با طول ثابت 5 برای تلگراف ابداع نمود. در کد بودت، اجزای کد دارای طول یکسان بوده و نقطه[5] و فاصله[6] نامیده می­شود. هر چند مورس ابداع کننده­ی اولین سیستم مخابراتی دیجیتال (تلگراف) است، اما سر آغاز آنچه ما امروز به عنوان مخابرات دیجیتال مدرن می­شناسیم به کار نایکویست[7] (1924) بر می­گردد؛ که مسئله حداکثر نرخ داده­ی قابل ارسال روی یک کانال تلگرافی با پهنای باند داده شده را بدون وقوع تداخل بین سمبل­ها بررسی نمود. نایکویست معادله­­ی (2-1) را برای سیستم تلگراف پیشنهاد نمود که سیگنال ارسالی آن دارای صورت عمودی زیر است[2].

(1-1)  

که در این معادله بیانگر شکل پالس و دنباله داده­ی دودویی است که با نرخ بر ثانیه ارسال شده است. نایکویست کار خود را با تعیین شکل پالس بهینه با پهنای باند محدود هرتز به گونه­ای آغاز نمود که علاوه بر عدم ایجاد تداخل بین سمبل­ها در لحظات نمونه ­برداری ، نرخ بیت نیز حداکثر شود. مطالعات، وی را به این نتیجه، که حداکثر نرخ ارسال پالس بر ثانیه است رساند، که این نرخ را، نرخ نایکویست می­نامند. دستیابی به این نرخ ارسال با استفاده از شکل پالس مقدور است. این شکل پالس امکان بازیابی داده را بدون تداخل بین سمبل­ها در لحظات نمونه­برداری فراهم می­کند. نتیجه­ی کار نایکویست معادل تفسیری از قضیه­ی نمونه­برداری برای سیگنال­های باند محدود است که بعدها توسط شانون[8] (1948) مطرح شد. قضیه­ی نمونه برداری چنین بیان می­دارد که سیگنال باند محدود را می­توان از روی نمونه­های برداشته شده با نرخ نایکویست نمونه در ثانیه با استفاده از فرمول درون­یابی زیر بازسازی نمود.

 

(1-2)

 

هارتلی[9] با الهام از کار نایکویست (1928) مسئله نرخ ارسال مطمئن داده روی یک کانال دارای پهنای باند محدود را با استفاده از سطوح دامنه­ی چندگانه بررسی نمود. هارتلی از این قیاس منطقی که گیرنده با وجود نویز و تداخل می­تواند دامنه­ی سیگنال دریافتی را با دقت معینی مثلا با اطمینان تخمین بزند استفاده کرد. بررسی­های هارتلی را به این نتیجه رهنمون ساخت که برای ارسال مطمئن اطلاعات روی یک کانال با پهنای باند محدود، وقتی که حداقل دامنه محدود به (قید توان ثابت) و توان تفکیک دامنه سیگنال دریافتی باشد، یک حداکثر نرخ ارسال داده وجود دارد [3]. یک پیشرفت چشمگیر دیگر در توسعه مخابرات دیجیتال، کار وینر[10] (1942) بود که مسئله تخمین شکل موج یک سیگنال دلخواه را در حضور نویز تجمعی و با مشاهده سیگنال دریافتی بررسی نمود. این مسئله در وامدوله­سازی سیگنال مطرح می­شود. وینر یک فیلتر خطی را تعیین نمود که خروجی آن بهترین تقریب سیگنال مورد ­نظر از دید متوسط مجذور است. فیلتر حاصله را، فیلتر خطی بهینه (کولموگارف[11]-وینر) گویند. نتایج هارتلی و نایکویست در مورد حداکثر نرخ ارسال اطلاعات دیجیتال بر کار شانون که به تبیین مبانی ریاضی انتقال اطلاعات و تعیین محدودیت­های پایه­ی سیستم­های مخابرات دیجیتال منجر گردید مقدم بود. شانون در کار پیشگامانه­ی خود مسئله اساسی انتقال مطمئن اطلاعات را در یک قالب آماری و با استفاده از مدل­های احتمالی برای منابع اطلاعات و کانال­های مخابراتی فرمول­بندی نمود. همچنین نشان داد که اثر محدودیت توان فرستنده، محدودیت پهنای باند و نویز تجمعی را می­توان با کانال مرتبط نموده و در یک پارامتر واحد به نام ظرفیت کانال جای داد. به عنوان مثال در مورد یک نویز تجمعی گوسی سفید (طیف صاف)، ظرفیت یک کانال ایده­آل با پهنای باند محدود برابر است با:

(1-3)  

که در آن متوسط توان ارسالی و چگالی طیفی توان نویز تجمعی است. مفهوم ظرفیت کانال به شرح زیر است: اگر نرخ اطلاعات منبع کمتر از ظرفیت باشد؛ در این­صورت از نظر تئوری امکان انتقال مطمئن اطلاعات (بدون خطا) از طریق این کانال با انتخاب شیوه­ی مناسب کدگذاری وجود دارد. از طرف دیگر اگر باشد مستقل از میزان پردازش انجام‌شده در فرستنده و گیرنده، امکان انتقال مطمئن وجود ندارد. در نتیجه شانون حدود اساسی انتقال اطلاعات را تبیین و حوزه­ی جدیدی به نام تئوری اطلاعات[12] را بنیان نهاد[3]. کار مهم دیگر در زمینه مخابرات دیجیتال مربوط به کوته لینکف[13] (1947) است که بر مبنای یک رویکرد هندسی[14] سیستم­های مختلف مخابرات دیجیتال را به صورت هماهنگ تجزیه و تحلیل نمود. کار او بعدها توسط وزنکراف[15] و جاکوبس[16] (1965) توسعه داده شد. متعاقب کار شانون، نوبت به کار کلاسیک همینگ[17] در مورد کدهای تصحیح و تشخیص خطا برای مقابله با اثرات تخریبی نویز کانال رسید. کار همینگ در سال­های بعد زمینه‌ساز تحقیقات گسترده­ای شد که منجر به کشف کدهای متنوع و قدرتمند جدیدی گردید، و بسیاری از آن‌ها در پیاده­سازی سیستم­های مخابراتی مدرن امروزی به کار می­روند. افزایش تقاضا برای انتقال اطلاعات در سه تا چهار دهه­ی گذشته، به همراه توسعه­ی مدارهای مجتمع پیشرفته­تر، به پیدایش سیستم­های مخابراتی بسیار کارآمد و مطمئن منجر گشته است. در جریان این تحولات نتایج اصلی شانون و تعمیم آن نتایج در مورد حداکثر سرعت انتقال روی کانال و حدهای عمل­کرد قابل دستیابی، نقش شاخص­های مرجع برای طراحی سیستم­های مخابراتی را داشته­اند. دستیابی به حدود تئوری استخراج‌شده توسط شانون و سایر محققان مشارکت‌کننده در توسعه تئوری اطلاعات، هدف غایی تلاش­های مستمر در زمینه­ی طراحی و توسعه سیستم­های مخابراتی دیجیتال کارآمدتر، است[3]. گسترش کاربرد مخابرات دیجیتال و فراهم شدن عرصه‌های گوناگون طراحی و ساخت سیستم­های پیچیده مخابراتی، زمینه را برای ارائه راه‌حلی جامع و هوشمند جهت شناسایی خودکار پیام‌های دریافتی فراهم، و ضرورت رویکرد تحقیقات علمی به این حوزه را لازم نمود.

برای دانلود پایان نامه اینجا را کلیک کنید.





لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 644
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : سه شنبه 5 مرداد 1395 | نظرات ()
مطالب مرتبط با این پست
لیست
می توانید دیدگاه خود را بنویسید


نام
آدرس ایمیل
وب سایت/بلاگ
:) :( ;) :D
;)) :X :? :P
:* =(( :O };-
:B /:) =DD :S
-) :-(( :-| :-))
نظر خصوصی

 کد را وارد نمایید:

آپلود عکس دلخواه: